
Association Rule Learning

Association Rule Learning (ARL) is a fascinating technique in the realm
of unsupervised machine learning. Let’s delve into its intricacies:

1. What Is Association Rule Learning?

o ARL is a rule-based method that uncovers interesting
relationships or associations between variables within large
datasets. It aims to identify strong rules using measures of
interestingness .

o Unlike supervised learning, where we predict outcomes based
on labeled data, ARL focuses on discovering dependencies
among data items without predefined target labels.

Association rule mining finds interesting associations and relationships

among large sets of data items. This rule shows how frequently a itemset

occurs in a transaction. A typical example is a Market Based Analysis.

Market Based Analysis is one of the key techniques used by large

relations to show associations between items.It allows retailers to identify

relationships between the items that people buy together frequently.

Given a set of transactions, we can find rules that will predict the

occurrence of an item based on the occurrences of other items in the

transaction.

Association rule learning is a type of unsupervised learning technique that

checks for the dependency of one data item on another data item and maps

accordingly so that it can be more profitable. It tries to find some interesting

relations or associations among the variables of dataset. It is based on

different rules to discover the interesting relations between variables in the

database.

https://www.javatpoint.com/association-rule-learning
https://www.javatpoint.com/association-rule-learning

The association rule learning is one of the very important concepts of machine

learning, and it is employed in Market Basket analysis, Web usage mining,

continuous production, etc. Here market basket analysis is a technique used

by the various big retailer to discover the associations between items. We can

understand it by taking an example of a supermarket, as in a supermarket, all

products that are purchased together are put together.

For example, if a customer buys bread, he most likely can also buy butter,

eggs, or milk, so these products are stored within a shelf or mostly nearby.

Consider the below diagram:

Association rule learning can be divided into three types of algorithms:

1. Apriori

2. Eclat

3. F-P Growth Algorithm

https://www.javatpoint.com/machine-learning
https://www.javatpoint.com/machine-learning

How does Association Rule Learning work?

Association rule learning works on the concept of If and Else Statement, such

as if A then B.

Here the If element is called antecedent, and then statement is called

as Consequent. These types of relationships where we can find out some

association or relation between two items is known as single cardinality. It is all

about creating rules, and if the number of items increases, then cardinality

also increases accordingly. So, to measure the associations between thousands

of data items, there are several metrics. These metrics are given below:

o Support

o Confidence

o Lift

Support

Support is the frequency of A or how frequently an item appears in the

dataset. It is defined as the fraction of the transaction T that contains the

itemset X. If there are X datasets, then for transactions T, it can be written as:

Confidence

Confidence indicates how often the rule has been found to be true. Or how

often the items X and Y occur together in the dataset when the occurrence of

X is already given. It is the ratio of the transaction that contains X and Y to the

number of records that contain X.

Lift

It is the strength of any rule, which can be defined as below formula:

It is the ratio of the observed support measure and expected support if X and

Y are independent of each other. It has three possible values:

o If Lift= 1: The probability of occurrence of antecedent and consequent

is independent of each other.

o Lift>1: It determines the degree to which the two itemsets are

dependent to each other.

o Lift<1: It tells us that one item is a substitute for other items, which

means one item has a negative effect on another.

Example:

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Before we start defining the rule, let us first see the basic definitions.

Support Count(σ) – Frequency of occurrence of a itemset.

Hereσ

({Milk, Bread, Diaper})=2

Frequent Itemset – An itemset whose support is greater than or equal

to minsup threshold. Association Rule – An implication expression of

the form X -> Y, where X and Y are any 2 itemsets.

Example: {Milk, Diaper}->{Beer}

Rule Evaluation Metrics –

 Support(s) – The number of transactions that include items in the
{X} and {Y} parts of the rule as a percentage of the total number of
transaction.It is a measure of how frequently the collection of items
occur together as a percentage of all transactions.

 Support =σ(X+Y)÷Total [It is interpreted as fraction of

transactions that contain both X and Y.]

S=σ({Milk, Diaper, Beer}) ÷ |T|

 = 2/5

 = 0.4

Conf(X=>Y) = Supp(X U Y) ÷ Supp(X) [It measures how often each

item in Y appears in transactions that contains items in X also.]

 C= σ (Milk, Diaper, Beer)÷ σ (Milk, Diaper)

 = 2/3

 = 0.67

 Lift(l) – The lift of the rule X=>Y is the confidence of the rule divided
by the expected confidence, assuming that the itemsets X and Y are
independent of each other.The expected confidence is the
confidence divided by the frequency of {Y}.

Lift(X=>Y) = Conf(X=>Y) ÷ Supp(Y) [Lift value near 1 indicates X

and Y almost often appear together as expected, greater than 1 means

they appear together more than expected and less than 1 means they

appear less than expected. Greater lift values indicate stronger

association.]

l= Supp({Milk, Diaper, Beer}) ÷ Supp({Milk, Diaper})*Supp({Beer})

 = 0.4 / (0.6 x 0.6)

 = 1.11

The Association rule is very useful in analyzing datasets. The data is

collected using bar-code scanners in supermarkets. Such databases

consist of a large number of transaction records which list all items

bought by a customer on a single purchase. So the manager could

know if certain groups of items are consistently purchased together

and use this data for adjusting store layouts, cross-selling, promotions

based on statistics.

Apriori algorithm

Apriori is an algorithm for frequent item set mining and association rule

learning over relational databases. It proceeds by identifying the frequent

individual items in the database and extending them to larger and larger

item sets as long as those item sets appear sufficiently often in the

database. The frequent item sets determined by Apriori can be used to

determine association rules which highlight general trends in the database:

this has applications in domains such as market basket analysis.

The Apriori algorithm was proposed by Agrawal and Srikant in 1994. Apriori

is designed to operate on databases containing transactions (for example,
collections of items bought by customers, or details of a website
frequentation or IP addresses). Apriori uses a "bottom up" approach, where
frequent subsets are extended one item at a time (a step known
as candidate generation), and groups of candidates are tested against the
data. The algorithm terminates when no further successful extensions are
found.

Apriori uses breadth-first search and a Hash tree structure to count
candidate item sets efficiently. It generates candidate item sets of length
k from item sets of length k-1. Then it prunes the candidates which have an
infrequent sub pattern. According to the downward closure lemma, the
candidate set contains all frequent k-length item sets. After that, it scans
the transaction database to determine frequent item sets among the
candidates.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Relational_databases
https://en.wikipedia.org/wiki/Association_rules
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Market_basket_analysis
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Hash_tree_(persistent_data_structure)

Apriori Algorithm people who bought something to bought something else
or who did something did something else.

Number of peoples(here 100) watched movies. One of my favorite

movies is Sholay. How many of the people have actually seen the

movie Sholay. So, support is 10%.

Apriori-Confidence:

What is the confidence? Confidence define number of people have

seen M1 and M2 moves divided by number of people have seen M1

movie.

Here we are going to assume people have seen Sholay. Hypothesis

people have seen Sholay they have also like Sholay. People have

seen Sholay also like to see Mohabbatein. Lets say 40 people have

seen Sholay. Now we want to how many people have seen

Mohabbatein those who have seen Sholay. i.e. seven people(7).

So, confidence here is 17.5%

Lift is basically Naïve Bayes classifier. Lift is basically confidence by

support. So, step-2 divided by step-1. Here our population :

If we take random population likelihood from fresh population. What

is the likelihood to like the movie? Likelihood is 10%, Out of 100

people only 10 people like that movie. Question is can we improve the

result by use some prior knowledge as algorithm Apriori.

We need to setup minimum support and confidence. Apriori quite slow

algorithm because goes through all of the different combination. So, lots of

lots of combinations pair…5..6..7 item combinations. We need to set some

kind limitation so set minimum support. We might not consider support not

less than 20%. Don’t want to waste time building a model something that

only has success rate 20%. Same way confident might not consider less

than 12% because not a strong enough factor or rule. We can sort the rules

by decreasing lift which we can find the highest lift and also get the top 5 or

10 lift. Those things consider for improving the business decision. That’s

how Apriori algorithm work.

Some good fun here

Amazon, Netflix some good example for using Apriori but of course there

much more sophisticated algorithms not just Apriori there much more

specific design combination of algorithms. Apriori just a kind of basic

approach, straight forward algorithm solving the problem.

Identify best Association rule among the different product bought by the

customer. Very famous deal to buy this and get that product if you buy this

then get that product free. Use association rule to find strong relation

among the different products. Association is used to market basket analyze

and optimization.

Let’s describe what the dataset about:

Imagine you are the business owner of the shop and you would like to

optimize and boost the sale after some new great deal. You have to identify

best association rules among the different products bought by the

customer. Offer to customer buy this and get that product free. Infect this

product they are very likely to get other product. Therefore, what did owner

did? he must know the data science or hire data scientist. So that learn the

association rule and owner offer to customer best deal.

Come to dataset each row of the dataset corresponds to the different

transaction mean different customer. Each of the transaction different

product, customer did the transaction to purchase. Here 7500 row means

where collected one week customer purchased. Owner recoded all the

transaction give them to you, data scientist. So, you learn the association

rule. Mission, you return to owner best possible association rule of two

elements. So, that owner can find the best deal to his client.

Dataset:

Apriori

!pip install apyori

O/P:

Collecting apyori

 Downloading apyori-1.1.2.tar.gz (8.6 kB)

 Preparing metadata (setup.py) ... done

Building wheels for collected packages: apyori

 Building wheel for apyori (setup.py) ... done

 Created wheel for apyori: filename=apyori-1.1.2-py3-none-any.whl

size=5955

sha256=78294c6efdf6ca2c7661015c082260046856d7d6e8aa22d8ea973099e5f8bb41

 Stored in directory:

/root/.cache/pip/wheels/c4/1a/79/20f55c470a50bb3702a8cb7c94d8ada15573538c7

f4baebe2d

Successfully built apyori

Installing collected packages: apyori

Successfully installed apyori-1.1.2

Importing the Libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

** Importing libraries same however first time we won’t use Scikit Learn.

sciKit Learn model doesn’t include Apriori Module or classes. So, we not

include scikit learn to train the model. Actually use another library

Apriori. Apriori.py is the python implement containg all Apriori algorithm

that what we will get and use trained our whole dataset but exceptionally,

Goole colab contains most of the library pre-installed but doesn’t include

ariori module. You have to installed it. pip command download first and

then it is installed it in particular notebook. In our case it is apyori

and version is apyori-1.1.2.

Data Preprocessing

dataset = pd.read_csv('Market_Basket_Optimisation.csv', header = None)

transactions = []

for i in range(0, 7501):

 transactions.append([str(dataset.values[i,j]) for j in range(0, 20)])

** In Dataset total 19 column that’s why range (0,20). We can’t directly

access cell of dataset that’s why we are using value as dataset.values and

training the Apriori model, all elements must be string otherwise Apriori

model won’t be learn the row. Makesur products are string so this value

must be inside string function i.e. str(dataset.values[i,j]). Here name of

the dataset is Market_Basket_Optimisation.csv; don’t try to open the

dataset here because dataset is very large size. We can specify indeed

that there are no header mean no column name that why header = None; Now

first row dataset take as first transaction.

Training the Apriori model on the dataset

from apyori import apriori

rules = apriori(transactions = transactions, min_support = 0.003,

min_confidence = 0.2, min_lift = 3, min_length = 2, max_length = 2)

** Now we need indeed to upload Apriori function, belongs to apyori

package: from apyori import apriori;

Apriori function takes some very intuitive arguments: 1st one dataset name

transactions(transactions list which we crated right format, next argument

is minimum support, here 7501 transaction among this most relevant rule

like support if a product 3 times per day in transaction then total

transaction in week is 21. Actually support is number of product appear in

the transaction divided by total number of transactions. Here consider

minimum support 3 time 7 divided by 7501(total transaction over the week.

So 3*7/7501=0.00279=0.003(round up).

Next argument is minimum confidence. Here we choose 0.2 for min_confidence

(no rule thump we choose as per business requirement.

Next parameter is minimum lift. Generally good lift is at least 3. Life

below 3 make the rule that is no relevant.

Two last arguments infect compulsory for business problem. Fact is buy a

product A and get the product B free. One product is left hand side rule

and other product is right hand rule. We need two more arguments here

min_elnght and then max_length. Min_lenght is minimum number of elements

in your left to right and max_length is maximum number elements in your

left to right. Set both are 2. Image buy two products and get one product

free the both would be 3. Just as per your business case set the minimum

length.

Visualising the results

Displaying the first results coming directly from the output of the apriori

function

results = list(rules)

results

** results=list(rules)Result variable as list of rules which will just

put this rules into a list. results display the all the rules.

O/P:

** starting with the 1st one: 1st row we see that two product in the rule light cream and chicken
(‘light cream’, ‘chicken’). It’s not order base but it is items_base light cream and items_add
chicken mean lefthand side light cream and right hand side chicken. So, it some one buy light
cream then they will have high chance to buy chicken. High chance measure by the confidence
that is 0.29. If customer buy light cream that will be 29% chance to buy chicken. Here
support=0.0045 confidence= 0.29.59… and lift =4.8439…

Putting the results well organised into a Pandas DataFrame

def inspect(results):

 lhs = [tuple(result[2][0][0])[0] for result in results]

 rhs = [tuple(result[2][0][1])[0] for result in results]

 supports = [result[1] for result in results]

 confidences = [result[2][0][2] for result in results]

 lifts = [result[2][0][3] for result in results]

 return list(zip(lhs, rhs, supports, confidences, lifts))

resultsinDataFrame = pd.DataFrame(inspect(results), columns = ['Left Hand

Side', 'Right Hand Side', 'Support', 'Confidence', 'Lift'])

**Inspect function which will return rules, mean this rule well organized

data frame pandas and sort the rules descending order. We will be able to

sort easily the rules by the lift. Each of the row take the separately

lhs, rhs, supports, confidences and lifts.

lhs left hand side row; rhs right hand side row; inspect function give

the output of the column name beside as the column name Left Hand Side,

Right Hand Side, Support, Confidece and Lift.

Explain:

lhs = [tuple(result[2][0][0])[0] for result in results]

 for result in results: each of the row inside the list. Each of the rules

is the full list of the rules and access each of the elements separately;

start with left hand side basically display ‘light cream’.

RelationRecord(items=frozenset({'light cream', 'chicken'}): this element index 0;
support=0.004532728969470737 : index 1;
ordered_statistics=[OrderedStatistic(items_base=frozenset({'light cream'}),
items_add=frozenset({'chicken'}), confidence=0.29059829059829057, lift=4.84395061728395)]) :
index 2;
result[2][0]: OrderedStatistic(items_base=frozenset({'light cream'}),
items_add=frozenset({'chicken'}), confidence=0.29059829059829057, lift=4.84395061728395) mean
square bracket;
result[2][0][0]: items_base=frozenset({'light cream'} which is left hand side and that is light
cream;
same way rhs: result[2][0][1]= items_add=frozenset({'chicken'} which is right hand side and that
is chicken;
supports = [result[1] for result in results] : full row and index 1

related to support=0.004532728969470737;

confidences = [result[2][0][2]: for result in results]=

confidence=0.29059829059829057 1st row index 2 then index 0 then index 2 for confidence;
same way lift;

Displaying the results non sorted

resultsinDataFrame

**different element separate column;

O/P:

** 1st row if customer buying light cream then they will have actually 29%
chance of buying chicken and this rule appear 0.4% transaction and lift
4.84 is also good. 2nd, 3rd rows…same rule..

Displaying the results sorted by descending lifts

resultsinDataFrame.nlargest(n = 10, columns = 'Lift')

**prebuild function pandas library for sort a specific column;

nlargest: is the specific method can take three argument like n= number of

row to return; columns=’Lift’ mean sort by the value of lift;

**here the highest lift 5.16 and lowest lift is 3.11 of top 10 lift. Formage

blanc and honey is the highest lift strong rule. If I owner the shop then

definitely make the buy formage blac and get free honey. Light cream

and chicken as second strongest rule.

ECLAT Algorithm

The ECLAT algorithm stands for Equivalence Class Clustering and bottom-
up Lattice Traversal. It is one of the popular methods of Association Rule
mining. It is a more efficient and scalable version of the Apriori algorithm. While
the Apriori algorithm works in a horizontal sense imitating the Breadth-First
Search of a graph, the ECLAT algorithm works in a vertical manner just like the
Depth-First Search of a graph. This vertical approach of the ECLAT algorithm
makes it a faster algorithm than the Apriori algorithm.

How the algorithm work? :
The basic idea is to use Transaction Id Sets(tidsets) intersections to compute
the support value of a candidate and avoiding the generation of subsets which
do not exist in the prefix tree. In the first call of the function, all single items are
used along with their tidsets. Then the function is called recursively and in each
recursive call, each item-tidset pair is verified and combined with other item-
tidset pairs. This process is continued until no candidate item-tidset pairs can
be combined.
Let us now understand the above stated working with an example:-

Consider the following transactions record:-

https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Association_rule_learning

The above-given data is a boolean matrix where for each cell (i, j), the value
denotes whether the j’th item is included in the i’th transaction or not. 1 means
true while 0 means false.

We now call the function for the first time and arrange each item with it’s tidset
in a tabular fashion:-

k = 1, minimum support = 2

Item Tidset

Bread {T1, T4, T5, T7, T8, T9}

Butter {T1, T2, T3, T4, T6, T8, T9}

Milk {T3, T5, T6, T7, T8, T9}

Coke {T2, T4}

Jam {T1, T8}

We now recursively call the function till no more item-tidset pairs can be
combined:-

k = 2

Item Tidset

{Bread, Butter} {T1, T4, T8, T9}

{Bread, Milk} {T5, T7, T8, T9}

{Bread, Coke} {T4}

{Bread, Jam} {T1, T8}

{Butter, Milk} {T3, T6, T8, T9}

Item Tidset

{Butter, Coke} {T2, T4}

{Butter, Jam} {T1, T8}

{Milk, Jam} {T8}

k = 3

Item Tidset

{Bread, Butter, Milk} {T8, T9}

{Bread, Butter, Jam} {T1, T8}

k = 4

Item Tidset

{Bread, Butter, Milk, Jam} {T8}

We stop at k = 4 because there are no more item-tidset pairs to combine.

Since minimum support = 2, we conclude the following rules from the given

dataset:-

Items Bought Recommended Products

Bread Butter

Bread Milk

Bread Jam

Butter Milk

Butter Coke

Items Bought Recommended Products

Butter Jam

Bread and Butter Milk

Bread and Butter Jam

Advantages over Apriori algorithm: -
1. Memory Requirements: Since the ECLAT algorithm uses a Depth-First

Search approach, it uses less memory than Apriori algorithm.
2. Speed: The ECLAT algorithm is typically faster than the Apriori algorithm.
3. Number of Computations: The ECLAT algorithm does not involve the

repeated scanning of the data to compute the individual support values.

Previous we had Apriori Model Support, Confidence and lift but in ECLAT
model, we only have Support.

How frequently set of items occurred. Here M stands for set of two or more
movies. Same things for transaction, if you have chips and burgers, 75% all of
your order. Some body just buying burgers then they will like to chips, then we
will recommend chips and there is 75% chance that they will also be interested

or like to buy chips. That is ECLAT approach and the step involve the minimum
support. You want to set your support level then you set all the subset in
transaction having higher support to minimum. Basically, at the top you will
have strongest combination of items, which you look at may be top 10 or
something like that. That’s all the ECLAT model, it’s much easier to understand
compare to Apriori model.

Eclat model is actually simplified version of the Apriori Model, because we only
deal with the Support. Some business model only interested in doing a support
therefore we might be used ECLAT Model. This time we are going to use a
Eclat analysis to analyze the highest support of combination of products here,
two because the deal buy one get it another product is free. Wo, well, that’s the
same scenario as in Apriori. Eclat Model is adapting just Apriori package to the
Eclat model by only considering the support. From scratch how I turned that
Apriori implementation into this new Eclat implementation.

Eclat model same as Apriori only some code change:

Importing the libraries & Data Preprocessing are same.

Training the Eclat model on the dataset

from apyori import apriori

rules = apriori(transactions = transactions, min_support = 0.003,

min_confidence = 0.2, min_lift = 3, min_length = 2, max_length = 2)

Training the dataset is same only remove the min confidence and min lift
here in order to really only consider this port but we still have to keep this.
Eclat not considering rules but set of products that because we are only
considering the support mean sets of products. which of course the number
of transaction containing the products, support set of products like let’s say
ABC, which is of A,B and C divided by the total number of transaction.

Visualising the results

Displaying the first results coming directly from the output of the apriori

function

results = list(rules)

results

Putting the results well organised into a Pandas DataFrame

def inspect(results):

 lhs = [tuple(result[2][0][0])[0] for result in results]

 rhs = [tuple(result[2][0][1])[0] for result in results]

 supports = [result[1] for result in results]

 return list(zip(lhs, rhs, supports))

resultsinDataFrame = pd.DataFrame(inspect(results), columns = ['Product

1', 'Product 2', 'Support'])

**same as Apriori only remove the confidence and lift. Left hand side replaced by Product 1 and right

hand side by Product 2. Here absolutely need to sort support. So, that directly display the result

sorted by descending support.

Displaying the results sorted by descending supports

resultsinDataFrame.nlargest(n = 10, columns = 'Support')

 O/P:

Here displaying the results sorted buy the descending Support. Indeed, we
see the combination of two products. The set of two products highest
support 0.0159 which mean 1.6% down to lowest support. For 10 set of
products with 10 higher supports. We simply build the Eclat Model by
adapting Apriori Model to Eclat Model and returning exact same output as
the Eclat Model is supposed give us. Meaning the set of products having
the highest support. If you want to perform an analysis with the largest set
of products here analysis only two set of products. You just need to change

these parameter max_length of Training the Eclat Model increases some
larger set of products. Now we can use this larger set of products. Most
frequently purchase set of two products like herb& pepper and ground beef.
All these seem very relevant associations leading. So, you have now an
extra association rule learning model in our toolkit. The Eclat Mode nicely
adapted from Apriori Model.

	Association Rule Learning
	How does Association Rule Learning work?
	Support
	Confidence
	Lift

	Apriori algorithm
	Apriori
	Data Preprocessing
	Training the Apriori model on the dataset
	Visualising the results
	Displaying the first results coming directly from the output of the apriori function
	Putting the results well organised into a Pandas DataFrame
	Displaying the results non sorted

	O/P:
	** 1st row if customer buying light cream then they will have actually 29% chance of buying chicken and this rule appear 0.4% transaction and lift 4.84 is also good. 2nd, 3rd rows…same rule..
	Displaying the results sorted by descending lifts

	ECLAT Algorithm
	The ECLAT algorithm stands for Equivalence Class Clustering and bottom-up Lattice Traversal. It is one of the popular methods of Association Rule mining. It is a more efficient and scalable version of the Apriori algorithm. While the Apriori algorithm...
	Training the Eclat model on the dataset
	Visualising the results
	Displaying the first results coming directly from the output of the apriori function
	Putting the results well organised into a Pandas DataFrame
	Displaying the results sorted by descending supports

